i*z^2+(1+i)*z+1=0

Simple and best practice solution for i*z^2+(1+i)*z+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for i*z^2+(1+i)*z+1=0 equation:


Simplifying
i * z2 + (1 + i) * z + 1 = 0

Multiply i * z2
iz2 + (1 + i) * z + 1 = 0

Reorder the terms for easier multiplication:
iz2 + z(1 + i) + 1 = 0
iz2 + (1 * z + i * z) + 1 = 0

Reorder the terms:
iz2 + (iz + 1z) + 1 = 0
iz2 + (iz + 1z) + 1 = 0

Reorder the terms:
1 + iz + iz2 + 1z = 0

Solving
1 + iz + iz2 + 1z = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-1' to each side of the equation.
1 + iz + iz2 + -1 + 1z = 0 + -1

Reorder the terms:
1 + -1 + iz + iz2 + 1z = 0 + -1

Combine like terms: 1 + -1 = 0
0 + iz + iz2 + 1z = 0 + -1
iz + iz2 + 1z = 0 + -1

Combine like terms: 0 + -1 = -1
iz + iz2 + 1z = -1

Add '-1z' to each side of the equation.
iz + iz2 + 1z + -1z = -1 + -1z

Combine like terms: 1z + -1z = 0
iz + iz2 + 0 = -1 + -1z
iz + iz2 = -1 + -1z

Reorder the terms:
1 + iz + iz2 + z = -1 + -1z + 1 + z

Reorder the terms:
1 + iz + iz2 + z = -1 + 1 + -1z + z

Combine like terms: -1 + 1 = 0
1 + iz + iz2 + z = 0 + -1z + z
1 + iz + iz2 + z = -1z + z

Combine like terms: -1z + z = 0
1 + iz + iz2 + z = 0

The solution to this equation could not be determined.

See similar equations:

| 3(8+2x)=-4x+4 | | 3(4w+10)=2 | | -40=18y-50 | | 5y+3y=7y+8 | | 2(12-2c)=3(9-c) | | 3w+1=28 | | 7+18r-6=9r+49-7r | | 2x/4=3x-7/2-3 | | 10(t-3)+4t=7(2t+5)-10 | | 7n-12=2n-8 | | 2x4=3x-7/2-3 | | 1500=x-(3/5)x | | 2x-3y+5=5 | | .5(x+40)+.3x=36 | | 54-15w=-56 | | 24=16-4y | | x^2+3x+225= | | 5(f-9)=-10 | | 4m-25=-14+9 | | x/7=x2/3 | | 10(s-7)=0 | | -30=-105x-42 | | x/7=2/3x | | X^2-y^2=12345 | | 1-3/2x | | 3m-11=-2 | | k^14+4k^7+3=0 | | 10/9t=-36 | | 5y+9=4y-4 | | -6(x-6)=2-5x | | 32=6r-4 | | ln((x^2)-1)-ln(x-1)=ln(6) |

Equations solver categories